(1)由已知可得--3分 由得 --5分 (2)由上可得.又.所以可得 . --7分 --10分 查看更多

 

题目列表(包括答案和解析)

(1)选修4-4:矩阵与变换
已知曲线C1:y=
1
x
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵M2=
20
03
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

(1)选修4-4:矩阵与变换
已知曲线C1:y=绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

(本小题满分12分)

为了解某班学生喜欢打篮球是否与性别有关,对该班50人进行了问卷调查得到了如下的列联表:

 

喜欢打篮球

不喜欢打篮球

合 计

男 生

 

5

 

女 生

10

 

 

合 计

 

 

50

已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为0.6。

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为喜欢打篮球与性别有关?说明你的理由;

(Ⅲ)已知不喜欢打篮球的5位男生中,喜欢踢足球,喜欢打羽毛球,喜欢打乒乓球,现在从这5位男生中选取3位进行其他方面的调查,求不全被选中的概率。

附:1.

2.在统计中,用以下结果对变量的独立性进行判断:

(1)当时,没有充分的证据判定变量有关联,可以认为变量是没有关联的;

(2)当时,有90%的把握判定变量有关联;

(3)当时,有95%的把握判定变量有关联;

(4)当时,有99%的把握判定变量有关联。

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

为了解某班学生喜欢打篮球是否与性别有关,对该班50人进行了问卷调查得到了如下的列联表:

 

喜欢打篮球

不喜欢打篮球

合 计

男 生

 

5

 

女 生

10

 

 

合 计

 

 

50

已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为0.6。

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为喜欢打篮球与性别有关?说明你的理由;

(Ⅲ)已知不喜欢打篮球的5位男生中,喜欢踢足球,喜欢打羽毛球,喜欢打乒乓球,现在从这5位男生中选取3位进行其他方面的调查,求不全被选中的概率。

附:1.

2.在统计中,用以下结果对变量的独立性进行判断:

(1)当时,没有充分的证据判定变量有关联,可以认为变量是没有关联的;

(2)当时,有90%的把握判定变量有关联;

(3)当时,有95%的把握判定变量有关联;

(4)当时,有99%的把握判定变量有关联。

 

 

 

 

 

查看答案和解析>>

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.
患心肺疾病 不患心肺疾病 合计
5
10
合计 50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>


同步练习册答案