矩阵的逆矩阵是 . 第15题图 查看更多

 

题目列表(包括答案和解析)

[选做题]
A.(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的长.
B.(选修4-2:矩阵与变换)
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
C.(选修4-4:坐标系与参数方程)
在极坐标系中,设圆ρ=3上的点到直线ρ(cosθ+
3
sinθ)=2
的距离为d,求d的最大值.
D.(选修4-5:不等式选讲)
设a,b,c为正数且a+b+c=1,求证:(a+
1
a
)2+(b+
1
b
)2+(c+
1
c
)2
100
3

查看答案和解析>>

精英家教网选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
AT2
AN2
=
PT•PS
NT•NS

B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:
m3
n
+
n3
m
≥m2+n2

查看答案和解析>>

[选做题]
A.(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的长.
B.(选修4-2:矩阵与变换)
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
C.(选修4-4:坐标系与参数方程)
在极坐标系中,设圆ρ=3上的点到直线的距离为d,求d的最大值.
D.(选修4-5:不等式选讲)
设a,b,c为正数且a+b+c=1,求证:

查看答案和解析>>

选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:≥m2+n2

查看答案和解析>>

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>


同步练习册答案