33.在同一地点有两个静止的声源.发出声波1和声波2.在同一空间的空气中沿同一方向传播.如图所示为某时刻这两列波的图像.则下列说法中正确的是: A. 波1速度比波2速度大 B. 相对于同一障碍物.波1比波2更容易发生衍射现象 C. 在这两列波传播的方向上.不会产生稳定的干涉现象 D. 在这两列波传播的方向上运动的观察者.听到的这两列波的频率可以相同 用波长为0.51µm的绿光在空气中经双缝在屏上得到干涉条纹.测得相邻两明条纹间距为0.55mm.在水中用红光做上述实验.测得相邻两明条纹间距也为0.55mm.如水的折射率为4/3.求此红光的频率. 选做3-5 查看更多

 

题目列表(包括答案和解析)

精英家教网某学校举行“科普与环保知识竞赛”,并从中抽取了部分学生的成绩(均为整数),所得数据的分布直方图如图.已知图中从左至右前3个小组的频率之比为1:2:3,第4小组与第5小组的频率分别是0.175和0.075,第2小组的频数为10.
(Ⅰ)求所抽取学生的总人数,并估计这次竞赛的优秀率(分数大于80分);
(Ⅱ)从成绩落在(50.5,60.5)和(90.5,100.5)的学生中任选两人,求他们的成绩在同一组的概率.

查看答案和解析>>

某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分 (0,1] (1,2] (2,3] (3,4] (4,5] (5,6]
人数 3 17 30 30 17 3
(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间(1,2]的中点值为1.5)作为代表:
(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望μ及标准差σ(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在(1.9,4.1)范围内的人数.
(Ⅲ)从这10000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:

(ⅰ)请画出右上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y
=bx+a
(附参考数据:
129
≈11.4

查看答案和解析>>

下面有5个命题:
①分针每小时旋转2π弧度;  ②函数f(x)=
sinx
1+cosx
是奇函数;
③若
OA
=x
OB
+y
OC
,且x+y=1,则A,B,C三点共线;
④在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
⑤在△ABC中,若sinA=sinB,则A=B.
其中,真命题的编号是
②③⑤
②③⑤
(写出所有真命题的编号)

查看答案和解析>>

下面有5个命题:
①分针每小时旋转2π弧度;
②若
OA
=x
OB
+y
OC
,且x+y=1,则A,B,C三点共线;
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④函数f(x)=
sinx
1+cosx
是奇函数;
⑤在△ABC中,若sinA=sinB,则A=B.
其中,真命题的编号是
 
(写出所有真命题的编号)

查看答案和解析>>

已知非零向量
OA
OB
OC
OD
满足:
OA
OB
OC
OD
(α,β,γ∈R)
,B、C、D为不共线三点,给出下列命题:
①若α=
3
2
,β=
1
2
,γ=-1
,则A、B、C、D四点在同一平面上;
②当α>0,β>0,γ=
2
时,若|
OA
|=
3
|
OB
|=|
OC
|=|
OD
|=1
OB
OC
>=
6
OD
OB
>=<
OD
OC
>=
π
2
,则α+β的最大值为
6
-
2

③已知正项等差数列an(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三点共线,但O点不在直线BC上,则
1
a3
+
4
a2008
的最小值为9;
④若α+β=1(αβ≠0),γ=0,则A、B、C三点共线且A分
BC
所成的比λ一定为
α
β

其中你认为正确的所有命题的序号是
 

查看答案和解析>>


同步练习册答案