17.已知是互不相等的非零实数.用反证法证明三个方程..至少有一个方程有两个相异实根. 查看更多

 

题目列表(包括答案和解析)

 

已知是互不相等的非零实数.用反证法证明三个方程

至少有一个方程有两个相异实根.

 

 

 

 

 

 

查看答案和解析>>

已知是互不相等的非零实数,求证:由确定的三条抛物线至少有一条与轴有两个不同的交点.

【解析】本试题主要是考查了运用反证法思想,对于正面解决难的问题的运用。

 

查看答案和解析>>

11、已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成(  )

查看答案和解析>>

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。

先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。

证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由题意a、b、c互不相等,∴①式不能成立.

∴假设不成立,即三个方程中至少有一个方程有两个相异实根.

 

查看答案和解析>>

1.         已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成(    )

A.三个方程都没有两个相异实根            B.一个方程没有两个相异实根

C.至多两个方程没有两个相异实根          D.三个方程不都没有两个相异实根

 

 

查看答案和解析>>


同步练习册答案