22.已知椭圆的中心在坐标原点.焦点在轴上.离心率为为椭圆上一动点.分别为椭圆的左.右焦点.且面积的最大值为. (1)求椭圆的方程, (2)设椭圆短轴的上端点为为动点.且成等差数列.求动点的轨迹的方程, (3)作的切线交于两点.求证:. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设P为该椭圆上的动点,C、D的坐标分别是(-
2
,0),(
2
,0),则PC•PD的最大值为(  )
A、4
B、2
2
C、3
D、2
2
+2

查看答案和解析>>

精英家教网已知椭圆的中心在坐标原点,焦点F1、F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,
MA1
=2
A1F1

(I)求椭圆的标准方程;
(Ⅱ)过点M的直线l'与椭圆交于C、D两点,若
OC
OD
=0
,求直线l'的方程.

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为 2
3
,左准线 l与x轴的交点为M,|MA1|:|A1F1|=
3
:1
,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与 A1,A2均不重合,设直线 PA1与 PA2的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若
|OP|
|OM|
,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆上点P(3
2
,4)
到两焦点的距离之和是12,则椭圆的标准方程是
 

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在x轴上,且长轴长为12,离心率为
1
3
,则椭圆的方程是
x2
36
+
y2
32
=1
x2
36
+
y2
32
=1

查看答案和解析>>


同步练习册答案