在平面直角坐标系中.O为坐标原点.已知两点M.若点C满足.点C的轨迹与抛物线:y2=2px交于D.E两点. (1).求抛物线的方程, 且斜率为1的直线l与该抛物线交于不同的两点A.B.且|AB|2p. (i)求a的取值范围, (ii)若线段AB的垂直平分线交x轴于点Q.求QAB面积的最大值. 理科数学试题 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,O为坐标原点,已知两点M (1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(1)求证:
OA
OB

(2)在x轴上是否存在一点P (m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,已知A(3,1),B(-1,3),若点C满足|
AC
+
BC
|=|
AC
-
BC
|,则C点的轨迹方程是(  )
A、x+2y-5=0
B、2x-y=0
C、(x-1)2+(y-2)2=5
D、3x-2y-11=0

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,点F、T、M、P满足
OF
=(1,0)
OT
=(-1,t)
FM
=
MT
PM
FT
PT
OF

(Ⅰ)当t变化时,求点P的轨迹C的方程;
(Ⅱ)若过点F的直线交曲线C于A,B两点,求证:直线TA、TF、TB的斜率依次成等差数列.

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,已知
p
=(-1,2)
,A(8,0),B(n,t),C(ksinθ,t),其中0≤θ≤
π
2

(1)若
AB
p
,且|
AB
|=
5
|
OA
|
,求向量
OB

(2)若向量
AC
p
,当k为大于4的某个常数时,tsinθ取最大值4,求此时
OA
OC
夹角的正切值.

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,A、B、C三点满足
OC
=
1
3
OA
+
2
3
OB

(Ⅰ)求证:A、B、C三点共线;
(Ⅱ)求
|
AC
|
|
CB
|
的值;
(Ⅲ)已知A(1,cosx)、B(1+cosx,cosx),x∈[0,
π
2
]
f(x)=
OA
OC
-(2m+
2
3
)|
AB
|
的最小值为-
3
2
,求实数m的值.

查看答案和解析>>


同步练习册答案