某兴趣小组测量电视塔AE的高度H.如示意图.垂直放置的标杆BC的高度h=4m.仰角∠ABE=.∠ADE=. (1)该小组已经测得一组.的值.tan=1.24.tan=1.20.请据此算出H的值, (2)该小组分析若干测得的数据后.认为适当调整标杆到电视塔的距离d.使与之差较大.可以提高测量精确度.若电视塔的实际高度为125m.试问d为多少时.-最大? [解析] 本题主要考查解三角形的知识.两角差的正切及不等式的应用. (1).同理:.. AD-AB=DB.故得.解得:. 因此.算出的电视塔的高度H是124m. (2)由题设知.得. .(当且仅当时.取等号) 故当时.最大. 因为.则.所以当时.-最大. 故所求的是m. 查看更多

 

题目列表(包括答案和解析)

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>


同步练习册答案