如图.在直三棱柱中..为棱的中点. 查看更多

 

题目列表(包括答案和解析)

如图,在直三棱柱中,点.

(1)求证:

(2)求证:平面平面

(3)求三棱锥的体

查看答案和解析>>

如图,在直三棱柱中,的中点.

(I)求证:平面

(II)求平面和平面夹角的余弦值.

 

查看答案和解析>>

如图,在直三棱柱中,的中点,且,  
(1)当时,求证:;  
(2)当为何值时,直线与平面所成的角的正弦值为,并求此时二面角的余弦值。

查看答案和解析>>

如图,在直三棱柱中,

的中点.(Ⅰ)求证:∥平面;  

(Ⅱ)求证:平面⊥平面.

 

查看答案和解析>>

如图,在直三棱柱中,

的中点.(Ⅰ)求证:∥平面;  

(Ⅱ)求证:平面⊥平面.

 

查看答案和解析>>

一、学科网(Zxxk.Com)

1.B       2.A      3.D      4.A      5.C       6.A      7.D      8.B       9.D      10.A 学科网(Zxxk.Com)

11.A     12.B学科网(Zxxk.Com)

1.由题意知,解得学科网(Zxxk.Com)

2.由,化得,解得学科网(Zxxk.Com)

3.,又学科网(Zxxk.Com)

4.设的角为的斜率的斜率学科网(Zxxk.Com)

,于是学科网(Zxxk.Com)

5.由条件,解,则学科网(Zxxk.Com)

学科网(Zxxk.Com)6.不等式组化得  学科网(Zxxk.Com)

       平面区域如图所示,阴影部分面积:

      

7.由已知得,而

       ,则是以3为公比的等比数列.

8.,于是,而解得

9.函数可化为,令

       可得其对称中心为,当时得对称中心为

10.

11.由条件得:,则所以

12.沿球面距离运动路程最短,最短路程可以选

      

二、填空题

13.

       ,由垂直得.即

       ,解得

14.99

       在等差数列中,也是等差数列,由等差中项定理得

       所以

15.

由题意知,直线是抛物线的准线,而的距离等于到焦点的距离.即求点到点的距离与到点的距离和的最小值,就是点与点的距离,为

16.②

一方面.由条件,,得,故②正确.

另一方面,如图,在正方体中,把分别记作,平面、平面、平面分别记作,就可以否定①与③.

三、解答题

17.解:,且

       ,即

       又

      

      

       由余弦定理,

       ,故

18.解:(1)只有甲解出的概率:

       (2)只有1人解出的概率:

19.解:(1)由已知,∴数列的公比,首项

             

             

              又数列中,

           ∴数列的公差,首项

             

             

             

             

             

           ∴数列的通项公式依次为

(2)

      

      

      

      

      

20.(1)证明;在直三棱柱中,

             

              又

             

              ,而

           ∴平面平面

(2)解:取中点,连接于点,则

与平面所成角大小等于与平面所成角的大小.

中点,连接,则等腰三角形中,

又由(1)得

为直线与面所成的角

∴直线与平面所成角的正切值为

(注:本题也可以能过建立空间直角坐标系解答)

21.解:(1)设椭圆方程为,双曲线方程为

              ,半焦距

              由已知得,解得,则

              故椭圆及双曲线方程分别为

       (2)向量的夹解即是,设,则

              由余弦定理得           ①

        由椭圆定义得                    ②

        由双曲线定义得                   ③

        式②+式③得,式②式③得

将它们代入式①得,解得,所以向量夹角的余弦值为

22.解(1)由处有极值

                               ①

处的切线的倾斜角为

          ②

由式①、式②解得

的方程为

∵原点到直线的距离为

解得

不过第四象限,

所以切线的方程为

切点坐标为(2,3),则

解得

(2)

      

       上递增,在上递减

       而

       在区间上的最大值是3,最小值是

 


同步练习册答案