①.③.⑤ [解析]令.排除②②,由.命题①正确, .命题③正确,.命题⑤正确. 若正实数X.Y 满足2X+Y+6=XY . 则XY 的最小值是 . 答案:18 已知.且满足.则xy的最大值为 . 答案:3 若点p(m.3)到直线的距离为4.且点p在不等式<3表示的平面区域内.则m= . 答案:-3 不等式的解集是 . 13. [命题意图]本小题主要考查不等式及其解法 [解析]: .数轴标根得: 不等式的解集是 . 查看更多

 

题目列表(包括答案和解析)

17、设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+3)=0,且当-1<x≤1时,f(x)=2x-3,求当2<x≤4时,f(x)的解析式.

查看答案和解析>>

某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:
①f(x)=p•qx
②f(x)=px2+qx+1;
③f(x)=x(x-q)2+p.(以上三式中p、q均为常数,且q>1)
(I)为准确研究其价格走势,应选哪种价格模拟函数,为什么?
(Ⅱ)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5].其中x=0表示8月1日,x=1表示9月1日,…,以此类推);
(Ⅲ)为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象和y轴交于(0,1)且y轴右侧的第一个最大值、最小值点分别为P(x0,2)和Q(x0+3π,-2).
(1)求函数y=f(x)的解析式及x0
(2)求函数y=f(x)的单调递减区间;
(3)如果将y=f(x)图象上所有点的横坐标缩短到原来的
1
3
(纵坐标不变),然后再将所得图象沿x轴负方向平移
π
3
个单位,最后将y=f(x)图象上所有点的纵坐标缩短到原来的
1
2
(横坐标不变)得到函数y=g(x)的图象,写出函数y=g(x)的解析式并给出y=|g(x)|的对称轴方程.

查看答案和解析>>

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若x∈[0,
π
2
]
,求函数f(x)的值域.

查看答案和解析>>

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,n∈N*
(I)求数列{bn}的通项公式;
(Ⅱ)若f(n)=
an  n为正奇数
bn  n为正偶数
,令Sn=f(1)+f(2)+f(3)+…+f(n);试写出Sn关于n的函数解析式;

查看答案和解析>>


同步练习册答案