19.如图所示.在坐标系xOy中.有边长为a的正方形金属线框abcd.其一条对角线ac和y轴重合.顶点a位于坐标原点O处.在y轴的右侧的Ⅰ.Ⅳ象限内有一垂直纸面向里的匀强磁场.磁场的上边界与线框的ab边刚好重合.左边界与y轴重合.右边界与y轴平行.t=0时刻.线圈以恒定的速度v沿垂直于磁场上边界的方向穿过磁场区域.取沿a→b→c→d→a的感应电流方向为正.则在线圈穿越磁场区域的过程中.感应电流i随时间t变化的图线是( ) 查看更多

 

题目列表(包括答案和解析)

在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),区间D:(6,7)为x轴上的给定区间,为使此物落在区间D内,a的取值范围是
-
1
4
<a<-
9
49
-
1
4
<a<-
9
49

查看答案和解析>>

(2012•浦东新区一模)如图所示,在平面直角坐标系xOy上放置一个边长为1的正方形PABC,此正方形PABC沿x轴滚动(向左或向右均可),滚动开始时,点P位于原点处,设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),x∈R,该函数相邻两个零点之间的距离为m.
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
函数性质 结  论
奇偶性
偶函数
偶函数
单调性 递增区间
[4k,4k+2],k∈z
[4k,4k+2],k∈z
递减区间
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零点
x=4k,k∈z
x=4k,k∈z
(3)试讨论方程f(x)=a|x|在区间[-8,8]上根的个数及相应实数a的取值范围.

查看答案和解析>>

如图所示,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上二点P的位置在(0,0),圆在x轴上沿正向滚动,则当圆滚动到圆心位于(2,1)时线段OP与初始单位圆的交点为M,则|OM|=
2-2cos2
6-4sin2-2cos2
2-2cos2
6-4sin2-2cos2

查看答案和解析>>

精英家教网轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米.
(Ⅰ)求助跑道所在的抛物线方程;
(Ⅱ)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值.)

查看答案和解析>>

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案