20.已知 是恒等式. 求a.b.c的值. 查看更多

 

题目列表(包括答案和解析)

已知A、B、C是直线l上不同的三点,O是l外一点,向量
OA
OB
OC
满足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.记y=f(x).
(Ⅰ)求函数y=f(x)的解析式:
(Ⅱ)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求实数a的取值范围:
(Ⅲ)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

已知点A(0,1)、B(0,-1),P是一个动点,且直线PA、PB的斜率之积为-
1
2

(1)求动点P的轨迹C的方程;
(2)设Q(2,0),过点(-1,0)的直线l交C于M、N两点,若对满足条件的任意直线l,不等式
QM
QN
≤λ
恒成立,求λ的最小值.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案