题目列表(包括答案和解析)
对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设是函数y=f(x)的导数y=的导数,若方程=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)
对于定义在区间D上的函数f(x),若存在闭区间[a,b]D和常数c.使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②“平顶型”函数在定义域内一定没有最小值;
③函数f(x)=-|x+2|-|x-1|为R上的“平顶型”函数;
④函数f(x)=sinx+|sinx|为R上的“平顶型”函数.
则以上说法中正确的是________.(填上你认为正确结论的序号)
给出下列三个命题:
①函数与是同一函数;
②若函数y=f(x)与y=g(x)的图像关于直线y=x对称,则函数y=f(2x)与的图像也关于直线y=x对称;
③若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.
其中真命题是
①②
①③
②③
②
给出下列三个命题:
①函数y=ln与y=lntan是同一函数;
②若函数y=f(x)与y=g(x)的图像关于直线y=x对称,则函数y=f(2x)与y=g(x)的图像也关于直线y=x对称;
③若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.
其中真命题是
①②
①③
②③
②
定义:若函数f(x)对于其定义域内的某一数x0都有f(x0)=x0,则称x0是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(Ⅰ)当a=1,b=-2时,求函数f(x)的不动点;
(Ⅱ)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+对称,求b的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com