题目列表(包括答案和解析)
(本小题满分12分)
如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.
(Ⅰ)在BC边上是否存在一点F,使得PB∥平面DEF.
(Ⅱ)若∠PAC=∠PBC=90º,证明:AB⊥PC
(本小题满分12分)
如图1,已知四边形ABCD是上、下底长分别为2和6,高DO为的等腰梯形,将它沿DO折成的二面角A-DO-B,如图2,连结AB,AC,BD,OC.
(Ⅰ)求三棱锥A-BOD的体积V;
(Ⅱ)证明:AC⊥BD;
(Ⅲ)求二面角D-AC-O的余弦值.
(本小题满分12分)四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形.
(I)若F为AC的中点,当点M在棱AD上移动时,是否总有BF丄CM,请说明理由.
(II)求三棱锥C_ADE的高.
(本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).
(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[
(本题满分12分) 如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形
(1)求证:;
(2)设线段的中点为,在直线 上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(3)求二面角正切值的大小。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com