设函数.则对于任意的实数和.是的( ) A.必要不充分条件 B. 充分不必要条件 C. 充分且必要条件 D.既不充分又不必要条件 答案:C.显然.函数在上是递增函数.而且是奇函数.于是.由.得.有.即.反过来.也成立. 若成等比数列.则函数与轴的交点个数是 A. 0 B. 1 C. 2 D. 不确定的 答案:A. 查看更多

 

题目列表(包括答案和解析)

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是
(1)(4)
(1)(4)

查看答案和解析>>

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是______.

查看答案和解析>>

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是______.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知定义在(—1,1)上的函数满足,且对时,有

(1)

判断在(—1,1)上的奇偶性,并加以证明;

(2)

,求数列{}的通项公式;

(3)

为数列{}的前项和,问是否存在正整数,使得对任意的,有成立?若存在,求出的最小值,若不存在,则说明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>


同步练习册答案