已知点P的坐标为(m.0).在x轴上存在点Q(不与P点重合).以PQ为边作正方形PQMN.使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究.发现不论m取何值.符合上述条件的正方形只有两个.且一个正方形的顶点M在第四象限.另一个正方形的顶点M1在第二象限. (1)如图所示.若反比例函数解析式为y= .P点坐标为.图中已画出一符合条件的一个正方形PQMN.请你在图中画出符合条件的另一个正方形PQ1M1N1.并写出点M1的坐标, (温馨提示:作图时.别忘 了用黑色字迹的钢笔或签字 笔描黑喔!) M1的坐标是 ▲ (2) 请你通过改变P点坐标.对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦ ▲ . 若点P的坐标为(m.0)时.则b﹦ ▲ , 的规律.如果点P的坐标为(6.0).请你求出点M1和点M的坐标.24. 如图.把含有30°角的三角板ABO置入平面直角坐标系中.A.B两点坐标分别为 (3.0)和(0.3).动点P从A点开始沿折线AO-OB-BA运动.点P在AO.OB. BA上运动的 面四民﹒数学兴趣小组对捐款情况进行了抽样调查.速度分别为1..2 ﹒一直尺的上边缘l从x轴的位置开 始以 的速度向上平行移动(即移动过程中保持l∥x轴).且分别与OB. AB交于E.F两点﹒设动点P与动直线l同时出发.运动时间为t秒.当点P沿折线 AO-OB-BA运动一周时.直线l和动点P同时停止运动. 请解答下列问题: (1)过A.B两点的直线解析式是 ▲ , (2)当t﹦4时.点P的坐标为 ▲ ,当t ﹦ ▲ .点P与点E重合, (3)① 作点P关于直线EF的对称点P′. 在运动过程中.若形成的四边形PEP′F为 菱形.则t的值是多少? ② 当t﹦2时.是否存在着点Q.使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标, 若不存在.请说明理由. 浙江省2010年初中毕业生学业考试 查看更多

 

题目列表(包括答案和解析)

(本题10分)

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.

(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)

M1的坐标是     ▲     

(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲  ,   若点P的坐标为(m,0)时,则b﹦ ▲   ;

(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

 

查看答案和解析>>

(本题10分)
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)
M1的坐标是     ▲     
(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲ ,   若点P的坐标为(m,0)时,则b﹦  ▲  ;
(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

(本题10分)
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)
M1的坐标是     ▲     
(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲ ,   若点P的坐标为(m,0)时,则b﹦  ▲  ;
(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

(本题10分)

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.

(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)

M1的坐标是     ▲     

(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲  ,    若点P的坐标为(m,0)时,则b﹦  ▲   ;

(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

 

查看答案和解析>>

(本题10分)
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)
M1的坐标是     ▲     
(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲ ,   若点P的坐标为(m,0)时,则b﹦  ▲  ;
(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>


同步练习册答案