命题“存在实数是有理数 用数学符号语言可以表示为 . 查看更多

 

题目列表(包括答案和解析)

命题“存在实数是有理数”用数学符号语言可以表示为                       .

 

查看答案和解析>>

命题“存在实数是有理数”的否定用数学符号语言可以表示为                       .

 

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β

(Ⅰ)计算:(2,3)⊙(-1,4);

(Ⅱ)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;

(Ⅲ)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;

(Ⅳ)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>


同步练习册答案