题目列表(包括答案和解析)
(本小题14分)已知点(1,)是函数且)的图象上一点,
等比数列的前项和为,数列的首项为,且前项和满足
-=+().
(1)求数列和的通项公式;
(2)若数列{前项和为,问的最小正整数是多少?
(3)设求数列的前项和
(本小题14分)
已知,
(1)若,函数在其定义域内是增函数,求的取值范围.
(2)在(1)的结论下,设,求函数的最小值;
(3)设各项为正的数列满足:,求证:
(本小题满分14分)已知函数满足:;(1)分别写出时的解析式和时 的解析式;并猜想时的解析式(用和表示)(不必证明)(2分)(2)当时,的图象上有点列和点列,线段与线段的交点,求点的坐标;(4分)
(3)在前面(1)(2)的基础上,请你提出一个点列的问题,并进行研究,并写下你研究的过程 (8分)
(本小题满分14分) 已知函数及正整数数列. 若,且当时,有; 又,,且对任意恒成立. 数列满足:.
(1) 求数列及的通项公式;
(2) 求数列的前项和;
(3) 证明存在,使得对任意均成立.
(本小题满分14分)
已知函数的图象经过点A(2,1)和B(5,2),记
(1)求数列的通项公式;
(2)设,若3-恒成立,求的最小值
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com