设.证明不等式 对所有的正整数n都成立. 必修5 第3章 不等式 §3.5不等式单元测试 查看更多

 

题目列表(包括答案和解析)


(1)证明不等式对所有的正整数n都成立;
(2)设,用定义证明

查看答案和解析>>

已知n是正整数,数列{an}的前n项和为Sn,对任何正整数n,等式Sn=-an+
12
(n-3)都成立.
(I)求数列{an}的首项a1
(II)求数列{an}的通项公式;
(III)设数列{nan}的前n项和为Tn,不等式2Tn≤(2n+4)Sn+3是否对一切正整数n恒成立?若不恒成立,请求出不成立时n的所有值;若恒成立,请给出证明.

查看答案和解析>>

已知n是正整数,数列{an}的前n项和为Sn,对任何正整数n,等式Sn=-an+
1
2
(n-3)都成立.
(I)求数列{an}的首项a1
(II)求数列{an}的通项公式;
(III)设数列{nan}的前n项和为Tn,不等式2Tn≤(2n+4)Sn+3是否对一切正整数n恒成立?若不恒成立,请求出不成立时n的所有值;若恒成立,请给出证明.

查看答案和解析>>

已知n是正整数,数列{an}的前n项和为Sn,对任何正整数n,等式Sn=-an+(n-3)都成立.
(I)求数列{an}的首项a1
(II)求数列{an}的通项公式;
(III)设数列{nan}的前n项和为Tn,不等式2Tn≤(2n+4)Sn+3是否对一切正整数n恒成立?若不恒成立,请求出不成立时n的所有值;若恒成立,请给出证明.

查看答案和解析>>

an=
1•2
+
2•3
+…+
n(n+1)
(n=1,2…)

(1)证明不等式
n(n+1)
2
an
(n+1)2
2
对所有的正整数n都成立;
(2)设bn=
an
n(n+1)
(n=1,2…)
,用定义证明
lim
n→∞
bn=
1
2
.

查看答案和解析>>


同步练习册答案