19. 设 (1)求从A中任取一个元素是(1.2)的概率, (2)从A中任取一个元素.求的概率 设为随机变量. (2)设从A中任取一个元素.的事件为C.有 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

(1)求从A中任取一个元素是(1,2)的概率;
(2)从A中任取一个元素,求的概率
(理)(3)设为随机变量,w.&
(2)设从A中任取一个元素,的事件为C,有
(4,6)(6,4)(5,5)(5,6)(6,5)(6,6)

查看答案和解析>>

(本小题满分12分)

    某校一个甲类班x名学生在2011年某次数学测试中,成绩全部介于90分与140分之间,

将测试结果按如下方式分成五组,第一组;第二组第五组

下表是按上述分组方法得到的频率分布表:

    (1)求x及分布表中m,n,t的值;

    (2)设a,b是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件“的概率。”

 

 

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是
(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>


同步练习册答案