(3)设cn= Sn+nan.Tn为数列{cn}的前n项和.求证:Tn<1. 查看更多

 

题目列表(包括答案和解析)

数列{an}的前n项和为Sn,首项a1=a,且an+1=2Sn+1,n∈N*
(1)若数列{an}是等比数列,求实数a的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令cn=
bn-4bn
(n∈N*)
,在(2)的条件下,求数列{cn}的“积异号数”.

查看答案和解析>>

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令数学公式(n∈N*),在(2)的条件下,求数列{cn}的“积异号数”.

查看答案和解析>>

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令cn=
bn-4
bn
(n∈N*),在(2)的条件下,求数列{cn}的“积异号数”.

查看答案和解析>>

数列{an}的前n项和为Sn,首项a1=a,且an+1=2Sn+1,n∈N*
(1)若数列{an}是等比数列,求实数a的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令cn=
bn-4
bn
(n∈N*)
,在(2)的条件下,求数列{cn}的“积异号数”.

查看答案和解析>>

数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令),在(2)的条件下,求数列的“积异号数”。

查看答案和解析>>


同步练习册答案