28. (1)① ② (2)① ② (3)① ② ③ 北京101中学理科综合能力三模测试卷 1 2 3 4 5 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分
(1)已知矩阵M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩阵M的特征值和对应的特征向量;(Ⅲ)计算M100β.
(2)曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),求曲线C在它所在的平面内绕点A旋转一周而形成的图形的周长.
(3)已知a>0,求证:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分

(1)(本小题满分7分)选修4-2:矩阵与变换

变换是将平面上每个点的横坐标乘,纵坐标乘,变到点.

(Ⅰ)求变换的矩阵;

(Ⅱ)圆在变换的作用下变成了什么图形?

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知极点与原点重合,极轴与x轴的正半轴重合.若曲线的极坐标方程为:,直线的参数方程为:为参数).

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)直线上有一定点,曲线交于M,N两点,求的值.

(3)(本小题满分7分)选修4-5:不等式选讲

 已知为实数,且

(Ⅰ)求证:

(Ⅱ)求实数m的取值范围.

 

查看答案和解析>>

(本小题满分14分)

(1) 证明:当时,不等式成立;

(2) 要使上述不等式成立,能否将条件“”适当放宽?若能,请放宽条件并简述理由;若不能,也请说明理由;

 (3)请你根据⑴、⑵的证明,试写出一个类似的更为一般的结论,且给予证明.

 

查看答案和解析>>

(本小题满分14分)

(1)求的值.

(2)已知,求的值.

查看答案和解析>>


同步练习册答案