如图.已知椭圆的中心在原点.焦点在轴上.长轴长是短轴长的2倍且经过点.平行于的直线在轴上的截距为.交椭圆于两个不同点 (1)求椭圆的方程, (2)求的取值范围, (3)求证直线与轴始终围成一个等腰三角形. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C 长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.

(1)求椭圆C的方程;

(2)求点P的坐标;

(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.

查看答案和解析>>

(本小题满分14分)

如图,已知椭圆是椭圆的顶点,若椭圆的离心率,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.

 

查看答案和解析>>

(本小题满分14分)

已知直线经过椭圆S:的一个焦点和一个顶点.

(1)求椭圆S的方程;

(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.

①若直线PA平分线段MN,求k的值;

②对任意,求证:

 

 

 

查看答案和解析>>

(本小题满分14分)

如图7,已知椭圆的离心率为,以椭圆的左顶点

圆心作圆,设圆与椭圆交于点与点

(1)求椭圆的方程;

(2)求的最小值,并求此时圆的方程;

(3)设点是椭圆上异于的任意一点,且直线分别与轴交于点

为坐标原点,求证:为定值.

 

 

查看答案和解析>>

(本小题满分14分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交椭圆于A、B两个不同点。

(1)求椭圆的方程;

(2)求m的取值范围;

(3)求证直线MA、MB与x轴始终围成一个等腰三角形。

 

 

查看答案和解析>>


同步练习册答案