18.解:(1) (2) 当在R上递增.满足题意, 当 ∴ . ∴ ∴ 综上.a的取值范围是. 19.解法一: (1) 过O作OF⊥BC于F.连接O1F. ∵OO1⊥面AC.∴BC⊥O1F. ∴∠O1FO是二面角O1-BC-D的平面角.······················· 3分 ∵OB = 2.∠OBF = 60°.∴OF =. 在Rt△O1OF中.tan∠O1FO = ∴∠O1FO=60° 即二面角O1-BC-D的大小为60°·············································· 6分 (2) 在△O1AC中.OE是△O1AC的中位线.∴OE∥O1C ∴OE∥O1BC.∵BC⊥面O1OF.∴面O1BC⊥面O1OF.交线O1F. 过O作OH⊥O1F于H.则OH是点O到面O1BC的距离.································· 10分 ∴OH = ∴点E到面O1BC的距离等于····················································· 12分 解法二: (1) ∵OO1⊥平面AC. ∴OO1⊥OA.OO1⊥OB.又OA⊥OB.······················· 2分 建立如图所示的空间直角坐标系 ∵底面ABCD是边长为4.∠DAB = 60°的菱形. ∴OA = 2.OB = 2. 则A(2.0.0).B.C(-2.0.0).O1·········· 3分 设平面O1BC的法向量为=(x.y.z).则⊥.⊥. ∴.则z = 2.则x=-.y = 3. ∴=(-.3.2).而平面AC的法向量=··························· 5分 ∴ cos<.>=. 设O1-BC-D的平面角为α. ∴cosα=∴α=60°. 故二面角O1-BC-D为60°.············································································· 6分 (2) 设点E到平面O1BC的距离为d. ∵E是O1A的中点.∴=(-.0.).············································· 9分 则d= ∴点E到面O1BC的距离等于.··································································· 12分 查看更多

 

题目列表(包括答案和解析)

解不等式:(1)     (2)

 

查看答案和解析>>

当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y

取得最大值的一个最优解为(1,2),则实数k的取值范围是(   )

A.(-∞,-1]∪[1,+∞)  B.[-1,1]  

C.(-∞,-1)∪(1,+∞)  D.(-1,1)

 

查看答案和解析>>

当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是

A.(-∞,-1]∪[1,+∞)                         B.[-1,1]

C.(-∞,-1)∪(1,+∞)                            D.(-1,1)

查看答案和解析>>

有分别满足下列条件的两个三角形:(1)∠B=30°,a=14,b=7;(2)∠B=60°,a=10,b=9.那么下面判断正确的是(    )

A.(1)只有一解,(2)也只有一解

B.(1)(2)都有两解

C.(1)有两解,(2)有一解

D.(1)只有一解,(2)有两解

查看答案和解析>>

解不等式

(1)

(2)|x-1|+|2-x|>3+x

查看答案和解析>>


同步练习册答案