解:(Ⅰ) -------------------------1分 作交于一点,则---2分 平面平面面---3分 所以---4分 (Ⅱ)平面平面,, 平面平面=.平面. 平面. ,--- 6分 又为圆的直径.. 平面.--- 7分 面,平面平面,--- 8分 (Ⅲ)取中点记作,设的中点为.连接, 则.又.则. 所以为平行四边形. --- 10分 .又平面.平面. 平面.--- 12分 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

一次函数与指数型函数,()的图像交于两点,解答下列各题

(1)求一次函数和指数型函数的表达式;

(2)作出这两个函数的图像;

(3)填空:当          时,;当     时,

 

查看答案和解析>>

(本题满分12分)
一次函数与指数型函数,()的图像交于两点,解答下列各题

(1)求一次函数和指数型函数的表达式;
(2)作出这两个函数的图像;
(3)填空:当          时,;当     时,

查看答案和解析>>

(本题满分12分)
一次函数与指数型函数,()的图像交于两点,解答下列各题

(1)求一次函数和指数型函数的表达式;
(2)作出这两个函数的图像;
(3)填空:当          时,;当     时,

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是
(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>


同步练习册答案