题目列表(包括答案和解析)
(本题满分15分)如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=沿直线EF将翻折成使平面平面BEF.
(I)求二面角的余弦值;
(II)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C
与重合,求线段FM的长.
(本小题满分15分) 如图,在四棱锥P-ABCD中,
底面ABCD为直角梯形,AD//BC,∠ADC=90°,
平面PAD⊥底面ABCD,Q为AD的中点,M是
棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM=t MC,若二面角M-BQ-C的平面角的
大小为30°,试确定t的值.
(本题满分15分)如图,设抛物线的准线与x轴交于点,
焦点为为焦点,离心率为的椭圆与抛物线在x轴上方的交点为P
,延长交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动。
1) 当m=3时,求椭圆的标准方程;
2) 若且P点横坐标为,求面积的最大值
|
设的夹角为
的取值范围; (III)设以点N(0,m)为圆心,以为
半径的圆与曲线E在第一象限的交点H,若圆在点H处的
切线与曲线E在点H处的切线互相垂直,求实数m的值。
(本小题满分15分)如图,四面体C—ABD,CB = CD,AB = AD,
∠BAD = 90°.E、F分别是BC、AC的中点.(Ⅰ)求证:AC⊥BD;(Ⅱ)如何在AC上找一点M,使BF∥平面MED?并说明理由;(Ⅲ)若CA = CB,求证:点C在底面ABD上的射影是线段BD的中点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com