A [解析]. [方法技巧]直接根据即可得出结论. 在等差数列中..则的值为 (A)5 (B)6 (C)8 (D)10 解析:由角标性质得.所以=5 设为等比数列的前n项和.则 (A)-11 (B)-8 (C)5 (D)11 解析:通过.设公比为.将该式转化为.解得=-2.带入所求式可知答案选A.本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式 在等比数列中. .则公比q的值为 A. 2 B. 3 C. 4 D. 8 解析: 在等比数列中..公比.若.则m=11 (D)12答案:C 已知数列的首项.其前项的和为.且.则 (A)0 (B) (C) 1 (D)2 解析:由,且 作差得an+2=2an+1 又S2=2S1+a1.即a2+a1=2a1+a1 Þ a2=2a1 故{an}是公比为2的等比数列 Sn=a1+2a1+22a1+--+2n-1a1=(2n-1)a1 则 答案:B 已知是首项为1的等比数列.是的前n项和.且.则数列的前5项和为 (A)或5 (B)或5 (C) (D) [答案]C [解析]本题主要考查等比数列前n项和公式及等比数列的性质.属于中等题. 显然q1.所以.所以是首项为1.公比为的等比数列. 前5项和. [温馨提示]在进行等比数列运算时要注意约分.降低幂的次数.同时也要注意基本量法的应用. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=ax+ (a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方

 

程为y=3.

(1)求f(x)的解析式;

(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,

并求出此定值.

 

查看答案和解析>>

近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):

 

“厨余垃圾”箱

“可回收物”箱

“其他垃圾”箱

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)试估计厨余垃圾投放正确的概率

(Ⅱ)试估计生活垃圾投放错误的概率

(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差最大时,写出a,b,c的值(结论不要求证明),并求此时的值。

(注:,其中为数据的平均数)

【解析】(1)厨余垃圾投放正确的概率约为

(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确。事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即约为,所以约为

(3)当时,方差取得最大值,因为

所以

 

查看答案和解析>>

近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):

 

“厨余垃圾”箱

“可回收物”箱

“其他垃圾”箱

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)试估计厨余垃圾投放正确的概率

(Ⅱ)试估计生活垃圾投放错误的概率

(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差最大时,写出a,b,c的值(结论不要求证明),并求此时的值。

(注:,其中为数据的平均数)

【解析】(1)厨余垃圾投放正确的概率约为

(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确。事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即约为,所以约为

(3)当时,方差取得最大值,因为

所以

 

查看答案和解析>>


同步练习册答案