已知函数f(x)=的图像在点P处的切线方程为y=3x-2 (Ⅰ)求实数a,b的值, +是[]上的增函数. (i)求实数m的最大值, (ii)当m取最大值时.是否存在点Q.使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形.则这两个封闭图形的面积总相等?若存在.求出点Q的坐标,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

 (本小题满分14分)

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;

(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求证:x1>1>x2

②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

 

查看答案和解析>>

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

(本小题满分14分)

已知点P ( t , y )在函数f ( x ) = (x ?? –1)的图象上,且有t2 – c2at + 4c2 = 0 ( c ?? 0 ).

(1) 求证:| ac | ?? 4;(2) 求证:在(–1,+∞)上f ( x )单调递增.(3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1.

查看答案和解析>>

.(本题满分14分)已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.

(1)若coscosφ-sinsinφ=0,求φ的值;

(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.

 

查看答案和解析>>


同步练习册答案