21.设分别是椭圆的左.右焦点.且椭圆上一点到两点距离之和等于4. (Ⅰ)求此椭圆方程, (Ⅱ)若斜率为的直线与椭圆交于不同的两点.若线段的垂直平分线过定点.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

 (本小题满分12分) 设椭圆C1的左、右焦点分别是F1F2,下顶点为A,线段OA的中点为BO为坐标原点),如图.若抛物线C2y轴的交点为B,且经过F1F2点.

(Ⅰ)求椭圆C1的方程;

(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1PQ两点,求面积的最大值.

查看答案和解析>>

(本小题满分12分)

有一幅椭圆型彗星轨道图,长4cm,高,如下图,

已知O为椭圆中心,A1,A2是长轴两端点,

 
太阳位于椭圆的左焦点F处.

   (Ⅰ)建立适当的坐标系,写出椭圆方程,

并求出当彗星运行到太阳正上方时二者在图上的距离;

   (Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,

设P是l上异于D点的任意一点,直线A1P,A2P分别

交椭圆于M、N(不同于A1,A2)两点,问点A2能否

在以MN为直径的圆上?试说明理由.

查看答案和解析>>

(本小题满分12分)

已知点是椭圆Ea > b > 0)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.

求椭圆E的方程;

AB是椭圆E上两个动点,是否存在λ,满足(0<λ<4,且λ≠2),且M(2,1)到AB的距离为?若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)

分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的取值范围;

(2)设过定点的直线与椭圆交于不同的两点M、N,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

(3)设是它的两个顶点,直线AB相交于点D,与椭圆相交于EF两点.求四边形面积的最大值.

查看答案和解析>>

(本小题满分12分)

已知均在椭圆上,直线分别过椭圆的左右焦点,当时,有.

   (I)求椭圆的方程;

   (II)设P是椭圆上的任一点,为圆的任一条直径,求的最大值.

查看答案和解析>>


同步练习册答案