(2)过点的直线与曲线C交于A.B两点.在线段AB上取点.满足.证明: 查看更多

 

题目列表(包括答案和解析)

曲线C上任一点到定点(0,
1
8
)的距离等于它到定直线y=-
1
8
的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线l1、l2分别交曲线C于A、B两点,且l1⊥l2,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

查看答案和解析>>

曲线C上的点P到定点N(2,0)的距离与到直线x=-2的距离相等.
(Ⅰ)求点P的轨迹C方程;
(Ⅱ)过点E(8,0)的直线交曲线C于两点A、B,求证:∠AOB=90°(O是坐标原点).

查看答案和解析>>

曲线C上的动点P到定点Q(1,0)与它到直线x+1=0的距离相等.求:
(1)曲线C的方程;
(2)过点Q的直线l与曲线C交于A、B两点,求证:
OA
OB
为定值.
(温馨提示:
a
={x1y1}
b
={x2y2}
,则
a
b
=x1x2+y1y2

查看答案和解析>>

曲线C上任一点到定点(0,)的距离等于它到定直线的距离.

(1)求曲线C的方程;

(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

 

查看答案和解析>>

曲线C上任一点到点的距离的和为12, Cx轴的负半轴、正半轴依次交于AB两点,点PC上,且位于x轴上方,

(Ⅰ)求曲线C的方程;

(Ⅱ)求点P的坐标;

(Ⅲ)以曲线C的中心为圆心,AB为直径作圆O,过点P的直线l截圆O的弦MN长为,求直线l的方程.

 

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

C

C

A

C

D

D

C

B

A

B

 

二、填空题

11. ;        12. (或);       13.  15;          14. 6;      

15.              16. ;                     17.

三、解答题

                                 …………12′

  故函数的取值范围是…………12′      

 

19. 解:(1)设袋中原有n个白球,由题意知:,所以=12,

解得n=4(舍去),即袋中原有4个白球;                          …………4′

(2)由题意,的可能取值为1,2,3,4

所以,取球次数的分布列为:

1

2

3

4

P

                                                             …………9′  

(Ⅲ)因为甲先取,所以甲只有可能在第1次和第3次取球,记“甲取到白球”的事件为A,

或 “=3”),所以  …………14′ 

20. 解:⑴由条件得:  ∴     ∵为等比数列∴                                 …………4′

 ⑵由   得           

     又   ∴                                 …………9′  ⑶∵

(或由),∴为递增数列.                            

从而      

                                         …………14′

21.解:(1)依题意有,由显然,得,化简得;                                                    …………5′

(2)证明:(?)

                                            …………10′

(?)设点A、B的坐标分别为,不妨设点A在点P与点B之间,点,依(?)有*,又可设过点P(2,4)的直线方程为,得

,代入上*式得

,又,得

 ,当直线AB的斜率不存在时,也满足上式.即点Q总过直线,得证.                                                               …………15′

22. 解:(Ⅰ)设在公共点处的切线相同.,由题意.即得:,或(舍去).即有.                              …………4′

,则.于是当,即时,

,即时,.故为增函数,在为减函数,于是的最大值为.                    …………8′

(Ⅱ)设

.故为减函数,在为增函数,于是函数上的最小值是.故当时,有,即当时,.       …………15′

 

 


同步练习册答案