(2)求证:(). 2008学年杭州二中高三年级第二学期数学试卷 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
3
,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有PE⊥AF;
(3)当BE为何值时,PA与平面PDE所成角的大小为45°?

查看答案和解析>>

17、如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC.

查看答案和解析>>

精英家教网如图,在正三棱柱ABC-A1B1C1中,AA1=2AB,D,D1,G分别为AB,A1B1,A1C1的中点,E、F在BB1上,且BB1=4BE=4B1F.
(1)求证:DG∥平面BCC1B1
(2)求证:平面DEG⊥平面C1D1F.

查看答案和解析>>

16、如图为正方体ABCD-A1B1C1D1切去一个三棱锥B1-A1BC1后得到的几何体.
(1)若点O为底面ABCD的中心,求证:直线D1O∥平面A1BC1
(2)求证:平面A1BC1⊥平面BD1D.

查看答案和解析>>

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.
(1)求证:f(x)-1为奇函数;
(2)求证:f(x)是R上的增函数;
(3)若f(4)=5,解不等式f(3m2-m-2)<3.

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

C

C

A

C

D

D

C

B

A

B

 

二、填空题

11. ;        12. (或);       13.  15;          14. 6;      

15.              16. ;                     17.

三、解答题

                                 …………12′

  故函数的取值范围是…………12′      

 

19. 解:(1)设袋中原有n个白球,由题意知:,所以=12,

解得n=4(舍去),即袋中原有4个白球;                          …………4′

(2)由题意,的可能取值为1,2,3,4

所以,取球次数的分布列为:

1

2

3

4

P

                                                             …………9′  

(Ⅲ)因为甲先取,所以甲只有可能在第1次和第3次取球,记“甲取到白球”的事件为A,

或 “=3”),所以  …………14′ 

20. 解:⑴由条件得:  ∴     ∵为等比数列∴                                 …………4′

 ⑵由   得           

     又   ∴                                 …………9′  ⑶∵

(或由),∴为递增数列.                            

从而      

                                         …………14′

21.解:(1)依题意有,由显然,得,化简得;                                                    …………5′

(2)证明:(?)

                                            …………10′

(?)设点A、B的坐标分别为,不妨设点A在点P与点B之间,点,依(?)有*,又可设过点P(2,4)的直线方程为,得

,代入上*式得

,又,得

 ,当直线AB的斜率不存在时,也满足上式.即点Q总过直线,得证.                                                               …………15′

22. 解:(Ⅰ)设在公共点处的切线相同.,由题意.即得:,或(舍去).即有.                              …………4′

,则.于是当,即时,

,即时,.故为增函数,在为减函数,于是的最大值为.                    …………8′

(Ⅱ)设

.故为减函数,在为增函数,于是函数上的最小值是.故当时,有,即当时,.       …………15′

 

 


同步练习册答案