题目列表(包括答案和解析)
(本题满分13分)
已知函数,函数的最小值为.
(1)求的解析式;
(2)是否存在实数同时满足下列两个条件:①;②当的定义域为时,值域为?若存在,求出的值;若不存在,请说明理由.
已知
(1)求函数在上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立
【解析】第一问中利用
当时,在单调递减,在单调递增,当,即时,,
第二问中,,则设,
则,单调递增,,,单调递减,,因为对一切,恒成立,
第三问中问题等价于证明,,
由(1)可知,的最小值为,当且仅当x=时取得
设,,则,易得。当且仅当x=1时取得.从而对一切,都有成立
解:(1)当时,在单调递减,在单调递增,当,即时,,
…………4分
(2),则设,
则,单调递增,,,单调递减,,因为对一切,恒成立, …………9分
(3)问题等价于证明,,
由(1)可知,的最小值为,当且仅当x=时取得
设,,则,易得。当且仅当x=1时取得.从而对一切,都有成立
( 本题满分12分) 已知函数
(1)求的最小正周期、单调增区间、对称轴和对称中心;
(2)该函数图象可由的图象经过怎样的平移和伸缩变换得到?
已知函数,函数的最小值为.
(1)求的解析式;
(2)是否存在实数同时满足下列两个条件:①;②当的定义域为时,值域为?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)
已知函数.
⑴求函数的最小值;
⑵若≥0对任意的恒成立,求实数a的值;
⑶在⑵的条件下,证明:.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com