17. 如图.在边长为a的正方体中.M.N.P.Q分别为AD.CD..的中点. (1)求点P到平面MNQ的距离, (2)求直线PN与平面MPQ所成角的正弦值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.

(Ⅰ)证明:MN∥平面ABCD;

(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.

 

查看答案和解析>>

(本小题满分12分)

如图,直四棱柱ABCDA1B1C1D1中,底面ABCD是边长为a的   

菱形,且,侧棱AA1长等于3aO为底面ABCD

角线的交点.

(1)求证:OA1∥平面B1CD1

(2)求异面直线ACA1B所成的角;

(3)在棱上取一点F,问AF为何值时,C1F⊥平面BDF

查看答案和解析>>

   (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

 

 

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?

(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

 

查看答案和解析>>

本小题满分12分)

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).

(1)求MN的长;

(2)当a为何值时,MN的长最小;

(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.

 

 

查看答案和解析>>

  (本小题满分12分)

如图所示,五面体ABCDE中,正的边长为1,AE丄平面ABC,CD//AE,且.

(I)设CE与平面ABE所成的角为a,AE=k(k>0),若,求k的取值范围;

(II)在(I)的条件下,当k取得最大值时,求平面BDE与平面ABC所成的角的大小.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案