29.下图是一个制取氯气并以氯气为原料进行某个特定反应研究的装置. (1)实验开始时.先点燃A处的酒精灯.打开K.使Cl2充满整个装置.再点燃D处酒精灯.然后连接上E装置,E处石蕊试液先变红后逐渐变为无色.同时漏斗中的液面略有上升.则产生颜色变化的原因是 a.反应中产生CO2的缘故 b.反应中产生HCl的缘故 c.反应中产生HCl并有Cl2溶于水 d.反应中同时有CO2.HCl产生的缘故 D处反应的化学方程式为 . (2)装置C的作用是 . (3)若将E处中的液体改为澄清石灰水.反应过程中的现象为 . a.有白色沉淀产生 b.先生成白色沉淀而后沉淀消失 c.无明显现象 d.开始无沉淀.然后产生白色沉淀 (4)当反应结束后关闭K.移去A处酒精灯.由于余热作用.A处仍有Cl2产生.此时B中现象为 .B的作用是 . (5)E装置无法确认D处反应中有CO2产生.为了证明CO2的存在.要对E装置进行改变.下列装置符合要求的是 (6)本实验的目的是 . 查看更多

 

题目列表(包括答案和解析)

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

  

(1)求第20行中从左到右的第3个数;

(2)若第行中从左到右第13与第14个数的比为,求的值;

(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;

(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.

试用含有的数学式子表示上述结论,并证明.

 

查看答案和解析>>

(本小题满分14分)下图是一个三角形数阵.从第二行起每一个数都等于它肩上两个数的和,第行的第一个数为

(Ⅰ)写出的递推关系,并求
(Ⅱ)求第行所有数的和
(Ⅲ)求数阵中所有数的和;并证明:当时,

查看答案和解析>>

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

(1)求第20行中从左到右的第3个数;
(2)若第行中从左到右第13与第14个数的比为,求的值;
(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.
试用含有的数学式子表示上述结论,并证明.

查看答案和解析>>

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

  

(1)求第20行中从左到右的第3个数;

   (2)若第行中从左到右第13与第14个数的比为,求的值;

   (3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;

(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.

        试用含有的数学式子表示上述结论,并证明.

查看答案和解析>>

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

  

(1)求第20行中从左到右的第3个数;

   (2)若第行中从左到右第13与第14个数的比为,求的值;

   (3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;

(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.

        试用含有的数学式子表示上述结论,并证明.

查看答案和解析>>


同步练习册答案