12.定义域为D的函数同时满足条件:①常数满足.区间.②使在上的值域为.那么我们把叫做上的“级矩形 函数.函数是上的“1级矩形 函数.则满足条件的常数对共有( ) A.1对 B.2对 C.3对 D.4对 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

定义域为D的函数同时满足条件:①常数满足,区间,②使上的值域为,那么我们把叫做上的“级矩形”函数.函数上的“1级矩形”函数,则满足条件的常数对共有(    )

A.1对              B.2对              C.3对              D.4对

 

查看答案和解析>>

对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
  (x>0)
是否为闭函数?并说明理由;
(3)若y=k+
x+2
是闭函数,求实数k的取值范围.

查看答案和解析>>

对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫做闭函数.
(Ⅰ)请你举出一个闭函数的例子,并写出它的一个符合条件②的区间[a,b];
(Ⅱ)求闭函数y=-x3符合条件②的区间[a,b];
(Ⅲ)判断函数f(x)=
3
4
x+
1
x
  (x>0)
是否为闭函数?并说明理由.

查看答案和解析>>

对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n]时,则称[m,n]是该函数的“和谐区间”.
(1)判断函数y=3-
4
x
是否存在“和谐区间”,并说明理由;
(2)如果[m,n]是函数y=
(a2+a)x-1
a2x
(a≠0)
的一个“和谐区间”,求n-m的最大值;
(3)有些函数有无数个“和谐区间”,如y=x,请你再举一类(无需证明)

查看答案和解析>>

对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
(x>0)是否为闭函数?并说明理由.

查看答案和解析>>


同步练习册答案