题目列表(包括答案和解析)
1 |
2 |
1 |
2 |
1 |
2 |
如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB
(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本试题主要考查了立体几何中的运用。
(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE为等腰三角形.
取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =.
连接FG,则FG∥EC,FG⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
连接AG,AG= 2 ,FG2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小为120°
下面推理是类比推理的是( )
A.两条直线平行,则同旁内角互补,若∠A和∠B是同旁内角,则∠A+∠B=180° |
B.由平面三角形的性质,推测空间四边形的性质 |
C.某校高二有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此推测各班都超过50位团员 |
D.一切偶数能被2整除,2100是偶数,故2100能被2整数 |
A.两条直线平行,则同旁内角互补,若∠A和∠B是同旁内角,则∠A+∠B=180° |
B.由平面三角形的性质,推测空间四边形的性质 |
C.某校高二有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此推测各班都超过50位团员 |
D.一切偶数能被2整除,2100是偶数,故2100能被2整数 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com