(1) 当a = 2, h = 3时. V = a2h= 12 ; S = 2a2+ 4ah =32 . --- 4分 (2) ∵a2h= 12, 2a(a + 2h) =32. ∴ , (a + 2h) =, ∴===. --- 4分 查看更多

 

题目列表(包括答案和解析)

(本小题满分8分)
 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

查看答案和解析>>

(本小题满分8分)
 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

查看答案和解析>>

(本小题满分8分)

 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;

(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

 

查看答案和解析>>

(本小题满分8分)

 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;

(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

 

查看答案和解析>>

(本小题满分4分)

 计算: sin60°+(-0

查看答案和解析>>


同步练习册答案