15.抛物线焦点为在其准线上.若抛物线上有两点使得是以为斜边的等腰直角三角形且为正三角形.则的最小值是 . 查看更多

 

题目列表(包括答案和解析)

抛物线C:x2=2py(p>0)上一点P(m,4)到其焦点的距离为5.
(I)求p与m的值;
(II)若直线l:y=kx-1与抛物线C相交于A、B两点,l1、l2分别是该抛物线在A、B两点处的切线,M、N分别是l1、l2与该抛物线的准线交点,求证:|
AM
+
BN
|>4
2

查看答案和解析>>

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为阿基米德三角形,则△ABQ为(  )

查看答案和解析>>

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为(  )
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

抛物线的焦点为,其上的动点在准线上的射影为,若是等边三角形,则的横坐标是(  )

A.             B.               C.             D.

 

查看答案和解析>>

抛物线上一点到其焦点的距离为5.

(1)求的值;

(2)若直线与抛物线相交于两点,分别是该抛物线在两点处的切线,分别是与该抛物线的准线交点,求证:

 

查看答案和解析>>


同步练习册答案