题目列表(包括答案和解析)
(本小题满分14分)已知点F椭圆E:的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且是边长为2的正三角形;又椭圆E上的P、Q两点关于直线对称.
(1)求椭圆E的方程;(2)当直线过点()时,求直线PQ的方程;
(3)若点C是直线上一点,且=,求面积的最大值.
(本小题满分14分)
.已知中心在原点的椭圆的一个焦点为(0 ,),且过点,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C。
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值。
(3)求三角形ABC面积的最大值。
本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于。
(1)证明:椭圆上的点到F2的最短距离为;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com