数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总试卷大全
题目列表(包括答案和解析)
数列
(Ⅰ)求数列的通项公式;
(Ⅱ)数列的通项公式;
(Ⅲ)设,求数列的前项和。
查看答案和解析>>
(14分)已知数列
(Ⅱ)设,试推断是否存在常数A,B,C,使对一切都有成立?说明你的理由;
2009.4
1-10.CDABB CDBDA
11. 12. 4 13. 14. 15.
16. 17.
18.解:(Ⅰ)由题意,有,
∴=.…………………………5分
由,得.
∴函数的单调增区间为 .……………… 7分
(Ⅱ)由,得.
∴. ……………………………………………… 10分
∵,∴. ……………………………………………… 14分
19.解:(Ⅰ)设数列的公比为,由, 得. …………………………………………………………… 4分
∴数列的通项公式为. ………………………………… 6分
(Ⅱ) ∵, , ①
. ②
①-②得: …………………12分
得, …………………14分
20.解:(I)取中点,连接.
∵分别是梯形和的中位线
∴,又
∴面面,又面
∴面.……………………… 7分
(II)由三视图知,是等腰直角三角形,
连接
在面AC1上的射影就是,∴
,
∴当在的中点时,与平面所成的角
是. ………………………………14分
21.解:(Ⅰ)由题意:.
为点M的轨迹方程. ………………………………………… 4分
(Ⅱ)由题易知直线l1,l2的斜率都存在,且不为0,不妨设,MN方程为与 联立得:,设
∴由抛物线定义知:|MN|=|MF|+|NF|…………7分
同理RQ的方程为,求得. ………………………… 9分
∴. ……………………………… 13分
当且仅当时取“=”,故四边形MRNQ的面积的最小值为32.………… 15分
22. 解:(Ⅰ),由题意得,
所以 ………………………………………………… 4分
(Ⅱ)证明:令,,
由得:,……………………………………………… 7分
(1)当时,,在上,即在上单调递增,此时.
∴ …………………………………………………………… 10分
(2)当时,,在上,在上,在 上,即在上单调递增,在上单调递减,在上单调递增,或者,此时只要或者即可,得或,
∴. …………………………………………14分
由 (1) 、(2)得 .
∴综上所述,对于都,使得成立. ………………15分
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区