21.直角坐标系下.O为坐标原点.定点.动点满足 查看更多

 

题目列表(包括答案和解析)

 

 (本题满分15分) 在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线,直线与曲线交于两点.

(1)求出的方程;

(2)若=1,求的面积

(3)若OA⊥OB,求实数的值

 

 

查看答案和解析>>


(本题满分15分) 在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线,直线与曲线交于两点.
(1)求出的方程;
(2)若=1,求的面积
(3)若OA⊥OB,求实数的值

查看答案和解析>>

(本小题满分10分)以直角坐标系的原点O为极点,x轴的正半轴为极轴.

已知点P的直角坐标为(1,-5),点M的极坐标为(4,).若直线l过点P

且倾斜角为 ,圆CM为圆心、4为半径.

(I)求直线l关于的参数方程(其中表示有向线段的数量,为直线l

任意一点)和圆C的极坐标方程;

(II)试判定直线l和圆C的位置关系.

查看答案和解析>>

(2009•台州二模)直角坐标系下,O为坐标原点,定点E(4,0),动点M(x,y)满足
MO
ME
=x2
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)过定点F(1,0)作互相垂直的直线l1,l2分别交轨迹C于点M,N和点R,Q,求四边形MRNQ面积的最小值.

查看答案和解析>>

直角坐标系下,O为坐标原点,定点E(8,0),动点M(x,y)满足
MO
ME
=x2
(1)求动点M(x,y)的轨迹C的方程;
(2)过定点F(2,0)作互相垂直的直线l1,l2分别交轨迹C于点M,N和点R,Q,求四边形MRNQ面积的最小值;
(3)定点P(2,4),动点A,B是轨迹C上的三个点,且满足KPA•KPB=8试问AB所在的直线是否过定点,若是,求出该定点的坐标;否则说明理由.

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由题意,有

.…………………………5分

,得

∴函数的单调增区间为 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)设数列的公比为,由.             …………………………………………………………… 4分

∴数列的通项公式为.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中点,连接.

分别是梯形的中位线

,又

∴面,又

.……………………… 7分

(II)由三视图知,是等腰直角三角形,

     连接

     在面AC1上的射影就是,∴

    

∴当的中点时,与平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由题意:.

为点M的轨迹方程.     ………………………………………… 4分

(Ⅱ)由题易知直线l1l2的斜率都存在,且不为0,不妨设,MN方程为 联立得:,设6ec8aac122bd4f6e

    ∴由抛物线定义知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程为,求得.  ………………………… 9分

.  ……………………………… 13分

当且仅当时取“=”,故四边形MRNQ的面积的最小值为32.………… 15分

22. 解:(Ⅰ),由题意得

所以                    ………………………………………………… 4分

(Ⅱ)证明:令

得:……………………………………………… 7分

(1)当时,,在,即上单调递增,此时.

          …………………………………………………………… 10分

(2)当时,,在,在,在,即上单调递增,在上单调递减,在上单调递增,或者,此时只要或者即可,得

.                        …………………………………………14分

由 (1) 、(2)得 .

∴综上所述,对于,使得成立. ………………15分


同步练习册答案