19.以为焦点的椭圆过点(.1).(Ⅰ)求椭圆的方程, (Ⅱ)过点(.0)的动直线交椭圆于.两点.试问:在坐标平面上是否存在一个定点.使得无论如何转动.以为直径的圆恒过点? 若存在.求出点的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点P(1,
3
2
)
且离心率为
1
2

(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x0,y0)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

椭圆C的中心在坐标原点O,焦点在y轴上,离心率为
2
2
,以短轴的一个端点与两焦点为顶点的三角形的面积为
1
2

(1)求椭圆C的方程;
(2)若过点P(0,m)存在直线l与椭圆C交于相异两点A,B,满足:
AP
PB
OA
OB
=4
OP
,求常数λ的值和实数m的取值范围.

查看答案和解析>>

精英家教网椭圆
x2
a2
+
y2
b2
=1(a>b>0)
一短轴顶点与两焦点的连接组成正三角形,且焦点到对应准线的距离等于3.过以原点为圆心,半焦距为半径的圆上任意一点P作该圆的切线l,且l与椭圆交于A、B两点.
(1)求椭圆的方程;
(2)求
OA
OB
的取值范围.

查看答案和解析>>

椭圆C1的中心在原点,过点(0,
3
),且右焦点F2与圆C2:(x-1)2+y2=
1
4
的圆心重合.
(1)求椭圆C1的方程;
(2)过点F2的直线l交椭圆于M、N两点,问是否存在这样的直线l,使得以MN为直径的圆过椭圆的左焦点F1?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案