取..得.即.故数列是公差为的等差数列.又.所以 查看更多

 

题目列表(包括答案和解析)

((本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

 

 

查看答案和解析>>

((本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

 

 

查看答案和解析>>

((本小题满分14分)
设数列是公差为的等差数列,其前项和为
(1)已知
(ⅰ)求当时,的最小值;
(ⅱ)当时,求证:
(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

     (ⅰ)求当时,的最小值;

     (ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>


同步练习册答案