(二)数列 1.数列的概念和简单表示法 了解数列的概念和几种简单的表示方法,知道数列是自变量为正整数的特殊函数. 2.等差数列.等比数列 理解等差数列.等比数列的概念,掌握等差数列.等比数列的通项公式与前n项和公式,能判断数列的等差或等比关系.并用等差数列.等比数列的有关知识解决相应的问题,了解等差数列与一次函数的关系.等比数列与指数函数的关系. 查看更多

 

题目列表(包括答案和解析)

(2012•昌平区二模)设数列{an}的首项a1=-
1
2
,前n项和为Sn,且对任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,数列{an}中的部分项{abk}(k∈N*)成等比数列,且b1=2,b2=4.
(Ⅰ)求数列{an}与{bn}与的通项公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函数f(x),设f(x)的定义域为R,记cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

(2009•黄浦区二模)若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),证明:数列{an+1-2an}是等比数列,并进一步求出{an}的通项公式an

查看答案和解析>>

(2009•黄浦区二模)若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)

查看答案和解析>>

(2013•广元二模)设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
①求证:数列{lgan}是等差数列;
②设bn=
3(lgan)(lgan+1)
求数列{bn}的前n项和Tn

查看答案和解析>>

(2013•茂名二模)数列{an}的前n项和Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,(n=1,2,…)
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=(n+1)•log3an+1,数列{
1
bn
}前n项和Tn.在(1)的条件下,证明不等式Tn<1;
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,在(1)的条件下,令cn=
nan-4
nan
(n=1,2,…),求数列{cn}的“积异号数”

查看答案和解析>>


同步练习册答案