7.设分别是定义在R上的奇函数和偶函数.当时. 查看更多

 

题目列表(包括答案和解析)

分别是定义在R上的奇函数和偶函数,当时,,且,则的解集是( )  

A.(-3,0)∪(3,+∞)                     B.(-3,0)∪(0,3)

C.(-∞,-3)∪(3,+∞)                  D. (-∞,-3)∪(0,3)

 

查看答案和解析>>

分别是定义在R上的奇函数和偶函数,当时,,且g(-3)=0,则不等式的解集是      ( )

A.(-3,0)∪(3,+∞)                     B. (-3,0)∪(0,3)

C.(-∞,-3)∪(3,+∞)                  D.(-∞,-3)∪(0,3)

 

查看答案和解析>>

分别是定义在R上的奇函数和偶函数,当时,,且,则的解集是(    )

A.(-3,0)∪(3,+∞)                     B.(-3,0)∪(0,3)

C.(-∞,-3)∪(3,+∞)                  D. (-∞,-3)∪(0,3)

 

查看答案和解析>>

分别是定义在R上的奇函数和偶函数,当时,,且,则不等式的解集为

         

 

 

查看答案和解析>>

分别是定义在R上的奇函数和偶函数,当时,则不等式的解集是

 

查看答案和解析>>

一、选择题:本大题共10个小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空题:本大题共4个小题,每小题4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答题:本大题共6个小题,每小题14分,共84分.

15.(4分)     

由题意得  

16. 有分布列:

0

1

2

3

P

从而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB1C1C上的射影。

     因为BB1C1C是正方形,

   

18.(1) 由题意得  

(2)

所以直线的斜率为

,则直线的斜率                                       

19.(1)由韦达定理得

是首项为4,公差为2的等差数列。

(2)由(1)知,则

原式左边=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x则

故(1)得证。

 (2)在R上任取x1,x2,且

 

所以在R上单调递增;

 (3)

;因为

所以无解,即圆心到直线的距离大于或等于半径2,只需

 

 


同步练习册答案