已知.. 在处取得极值.试求c的值和f(x)的单调增区间, (2)如右图所示.若函数的图象在连续光滑.试猜想拉格朗日中值定理:即一定存在使得?的表达式直接回答) 证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4. 台山侨中2010届高三级第二次模考数学试卷答卷 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

    已知函数,在点(1,f(1))处的切线方程为y+2=0.

    (1) 求函数f(x)的解析式;

(2) 若对于区间[一2,2]上任意两个自变量的值x1,x2,都有,求实

    数c的最小值;

   (3) 若过点M(2,m)(m≠2),可作曲线y=f(x)的三条切线,求实数m的取值范围,

 

 

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=-x3+bx2+cx+bc

(1)若函数f(x)在x=1处有极值-,试确定bc的值;

(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;

(3)记g(x)=|fx)|(-1≤x≤1)的最大值为M,若M≥k对任意的bc恒成立,试求k的取值范围.

  (参考公式:x3-3bx2+4b3=(x+b)(x2b)2)

查看答案和解析>>

(本小题满分14分)
已知函数f(x)=-x3+bx2+cx+bc
(1)若函数f(x)在x=1处有极值-,试确定bc的值;
(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;
(3)记g(x)=|fx)|(-1≤x≤1)的最大值为M,若M≥k对任意的bc恒成立,试求k的取值范围.
(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2)

查看答案和解析>>

.(本小题满分14分)已知函数f (x)=lnxg(x)=ex

( I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;

(Ⅱ)设直线l为函数的图象上一点A(x0f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

 

 

查看答案和解析>>

.(本小题满分14分)已知函数f (x)=lnxg(x)=ex
( I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>


同步练习册答案