①函数为偶函数, ②若.则, 查看更多

 

题目列表(包括答案和解析)

为偶函数,当时,,则当时,=      

 

查看答案和解析>>

为偶函数,当时,,则当时,=      

查看答案和解析>>

函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,现给出下列结论:
①函数f(x)=x2(x∈R)是单函数;
②函数f(x)=2x(x∈R)是单函数;
③偶函数y=f(x),x∈[-m,m](m∈R)有可能是单函数;
④在定义域上具有单调性的函数一定是单函数.
其中的正确的结论是
②④
②④
(写出所有正确结论的序号).

查看答案和解析>>

函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.如[-2.1]=-3,[-3]=-3,[2.5]=2.f(x)的奇偶性是
非奇非偶
非奇非偶
;若x∈[-2,3],则f(x)的值域为
{0,1,2,3,4,5,9}
{0,1,2,3,4,5,9}

查看答案和解析>>

函数的定义域为,若,且时总有,则称为单函数.例如是单函数,现给出下列结论:
①函数是单函数;
②函数是单函数;
③偶函数)有可能是单函数;
④在定义域上具有单调性的函数一定是单函数.
其中的正确的结论是        (写出所有正确结论的序号).

查看答案和解析>>

一、选择题:本大题共10个小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空题:本大题共4个小题,每小题4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答题:本大题共6个小题,每小题14分,共84分.

15.(4分)     

由题意得  

16. 有分布列:

0

1

2

3

P

从而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB1C1C上的射影。

     因为BB1C1C是正方形,

   

18.(1) 由题意得  

(2)

所以直线的斜率为

,则直线的斜率                                       

19.(1)由韦达定理得

是首项为4,公差为2的等差数列。

(2)由(1)知,则

原式左边=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x则

故(1)得证。

 (2)在R上任取x1,x2,且

 

所以在R上单调递增;

 (3)

;因为

所以无解,即圆心到直线的距离大于或等于半径2,只需

 

 


同步练习册答案