已知函数. (1)若在上是单调减函数,求实数的取值范围; (2)设,若不等式对一切恒成立,求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数

⑴若的定义域和值域均是,求实数的值;

⑵若上是减函数,且对任意的,总有,求实数的取值范围.

【解析】(1)先对函数配方,找出对称轴,明确单调性,再利用函数最值求解.

(2)在(1)的基础上,由a≥2,明确对称轴x=a∈[1,1+a]且(a+1)-a≤a-1,从而明确了单调性,再求最值.利用绝对值的性质,即得结果.

 

查看答案和解析>>

已知函数f(x)=x3-9x2cosα+48xcosβ,g(x)=f'(x),且对任意的实数t均有g(1+e-|t|)≥0,g(3+sint)≤0.
(I)求g(2);
(II)求函数f(x)的解析式;
(Ⅲ)记函数h(x)=f(x)-
23
x3+(a+9)x2
-(b+24)x(a,b∈R),若y=h(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

已知函数f(x)=-x2+ax+1-lnx.
(Ⅰ)当a=3时,求函数f(x)的单调递增区间;
(Ⅱ)若f(x)在区间(0,
12
)上是减函数,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=x4-4x3+ax2-1在区间[0,1]单调递增,在区间[1,2)单调递减.
(Ⅰ)求a的值;
(Ⅱ)若A(x0,f(x0))在函数f(x)的图象上,求证点A关于直线x=1的对称点B也在函数f(x)的图象上;
(Ⅲ)是否存在实数b,使得函数g(x)=bx2-1的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的值;若不存在,试说明理由

查看答案和解析>>

20、已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减;
(1)求a的值;
(2)是否存在实数b,使得函数g(x)=bx2-1的图象与函数f(x)的图象恰有2个交点,若存在,求出实数b的值;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案