题目列表(包括答案和解析)
|
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数是上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数和的值.
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数是上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数和的值.
对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数和是否为R上的“平底型”函数? 并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求和的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com