6.在数轴上表示不等式≤<1和的下列值:.. ..并利用数轴说明的这些取值中.哪些满足不等式 ≤<1.哪些不满足. 查看更多

 

题目列表(包括答案和解析)

我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|
请回答下列问题:
(1)数轴上表示-2和3的两点之间的距离是
5
5

(2)数轴上表示x和-3的两点之间的距离为2,则有理数x是
-5或-1
-5或-1

(3)若x表示一个有理数,且-3<x<1,则|x-1|+|x+3|=
4
4

(4)若x表示一个有理数,且|x-1|+|x+3|>4,则有理数x的取值范围是
x>1或x<-3
x>1或x<-3

(5)不等式|x-1|+|x+3|≥8的解集是
x≥3或x≤-5
x≥3或x≤-5

查看答案和解析>>

“数形结合”是一种极其重要的思想方法.例如,我们可以利用数轴解分式不等式
1
x
<1(x≠0).先考虑不等式的临界情况:方程
1
x
=1的解为x=1.如图,数轴上表示0和1的点将数轴“分割”成x<0、0<x<1和x>1三部分(0和1不算在内),依次考察三部分的数可得:当x<0和x>1时,
1
x
<1成立.理解上述方法后,尝试运用“数形结合”的方法解决下列问题:
(1)分式不等式
1
x
>1的解集是
0<x<1
0<x<1

(2)求一元二次不等式x2-x<0的解集;
(3)求绝对值不等式|x+1|>5的解集.

查看答案和解析>>

“数形结合”是一种极其重要的思想方法.例如,我们可以利用数轴解分式不等式
1
x
<1(x≠0).先考虑不等式的临界情况:方程
1
x
=1的解为x=1.如图,数轴上表示0和1的点将数轴“分割”成x<0、0<x<1和x>1三部分(0和1不算在内),依次考察三部分的数可得:当x<0和x>1时,
1
x
<1成立.理解上述方法后,尝试运用“数形结合”的方法解决下列问题:
(1)分式不等式
1
x
>1的解集是______;
(2)求一元二次不等式x2-x<0的解集;
(3)求绝对值不等式|x+1|>5的解集.

查看答案和解析>>

28、阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
1或-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>


同步练习册答案