解析:∵AB=x, ∴AD=12-x. 又.于是. 由勾股定理得 整理得 因此的面积 . 由 得 ∴[来源:学.科.网] ∴. 当且仅当时.即当时.S有最大值 答:当时.的面积有最大值 查看更多

 

题目列表(包括答案和解析)

(2013•闸北区一模)如图,某农业研究所要在一个矩形试验田ABCD内种植三种农作物,三种农作物分别种植在并排排列的三个形状相同、大小相等的矩形中.试验田四周和三个种植区域之间设有1米宽的非种植区.已知种植区的占地面积为800平方米.
(1)设试验田ABCD的面积为S,AB=x,求函数S=f(x)的解析式;
(2)求试验田ABCD占地面积的最小值.

查看答案和解析>>

已知函数f(x)=b•ax(其中a,b为常数且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若不等式(
ab
)x≥2m+1
在x∈(-∞,1]上恒成立,求实数m的取值范围.

查看答案和解析>>

如图,设矩形ABCD(AB>AD)的周长为l(l为定值),把该矩形沿AC折起来,AB折过去后,交DC于点P,设AB=x,△ADP的面积为y.
(1)求函数y=f(x)的解析式,并指出定义域;
(2)求△ADP的最大面积及相应的x值.

查看答案和解析>>

(2012•南京二模)某单位设计一个展览沙盘,现欲在沙盘平面内,布设一个对角线在l上的四边形电气线路,如图所示.为充分利用现有材料,边BC,CD用一根5米长的材料弯折而成,边BA,AD用一根9米长的材料弯折而成,要求∠A和∠C互补,且AB=BC.
(1)设AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范围;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

如图,某单位准备修建一个面积为600平方米和矩形场地(图中ABCD)的围墙,且要求中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为800元每平方米,设围墙(包括EF)的修建总费用为y元.
(1)求出y关于x的函数解析式;
(2)当x为何值时,设围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>


同步练习册答案